
WeibPar 4 User Guide

Table of Contents

1.	Program Features	Page 3
2.	Installation	5
3.	Uninstall	5
4.	Licensing	6
5.	Program Execution	7
6.	Data Sets a. Time Independent i. Uncensored ii. Censored iii. Pooled b. Time Dependent i. Uncensored	9
7.	Program Use a. Menus b. Buttons c. Windows and Dialogs i. Main Window ii. Analysis Options – Time Independent Dialog iii. Analysis Options – Time Dependent Dialog iv. Weibull Data File Window v. Pooled Data Window vi. Time Dependent Data File Window vii. Generate Data Dialog	11 13 14 15 16 20 24 27
8.	Examples	28

Program Features

COMPONENT RELIABILITY: WeibPar interacts with CARES to calculate effective volumes or areas, as well as computing confidence bounds on component reliability through bootstrap techniques. The user must be in possession of the CARES (Ceramics Analysis and Reliability Evaluation of Structures) algorithm to perform these computations. The CARES program evaluates the structural reliability of components consisting of brittle materials.

TIME INDEPENDENT PARAMETER ESTIMATION (Fast Fracture Weibull Parameter Estimation): WeibPar estimates parameters for both the two and three parameter Weibull distributions from uncensored failure strength data. The program displays, both numerically and graphically, the maximum likelihood parameter estimates as well as the linear regression parameter estimates. Regarding the failure data, the user is prompted for the flaw type, volume or surface, as well as the specimen geometry. Current geometries include tensile specimens and bend bar specimens. Direct input of the effective volume or area is available for cases when the user calculates the effective volume or area outside of WeibPar. Additionally, WeibPar will utilize a finite element model of the specimen geometry to calculate the effective volume or area.

The linear regression estimation algorithm and the plotting routines require a data ranking formula. Multiple ranking formula schemes are available as a user option.

Unbiasing factors and confidence bounds are provided on the two parameter maximum likelihood estimates. One set of the bounds is calculated based on the Thoman, Bain and Antle procedure. For this procedure Monte-Carlo techniques were utilized to derive tables of unbiasing factors and confidence bound factors. The second set of confidence bounds is calculated by the likelihood ratio hypothesis test. An additional graphic is provided with this method that shows the confidence "ring" around the parameter estimates. A third set of confidence bounds is calculated based on bootstrap techniques.

WeibPar uses two parameter maximum likelihood estimation techniques to estimate parameters for censored data. Censored data is failure data where each data point has been associated with a flaw type such as volume or surface. Confidence bounds are calculated for censored data via the Bootstrap technique.

WeibPar calculates pooled Weibull parameters from multiple uncensored data sets of different geometries for either volume or surface flaws.

TIME DEPENDENT PARAMETER ESTIMATION (Fatigue Parameter Estimation): WeibPar estimates time dependent parameters from dynamic fatigue data through linear regression techniques. Combined with fast fracture (or Weibull) parameters and the specimen geometry, the time dependent material parameters are calculated. A CMP file may be created for use in the CARES program via the Export results function.

DATA SET GENERATION: Uncensored randomly generated data sets may be created based on the user's input of Weibull parameters and the number of data points. The data sets are created through Monte-Carlo techniques. The generated data sets may be saved to a file.

PRINT, EXPORT: These functions are available from the File menu and allow the user to print the chart or the estimated parameters and export the chart to different file formats such as JPEG, Bitmap or Metafile. Two formatted text files, WPR and CMP, may be created through the export results function. The WPR format includes all plotting information necessary for use in other graphics packages. The CMP file, CARES material parameter file, includes appropriately formatted material parameters for use in reliability analysis.

Installation

This 32-bit program has been designed for Windows XP. The program has additionally been tested under Windows NT, 2000, and XP 64-bit. The program has also been updated for the German and Italian versions of Windows XP.

- 1. Unzip the zip file into an empty subdirectory.
- 2. Double click on SETUP.EXE. The SETUP program will guide you through the installation sequence.
- 3. The SETUP program prompts for an installation directory.

```
C:\Program Files\CRT Inc\WeibPar 4.0\
```

is the recommended directory. This directory will be referred to as <InstallDir>.

The files and directory structure after installation:

Subdirectory	File	Description			
<installdir>\bin</installdir>	WeibPar.exe	Main Program			
	Unbias.sup	Table of unbiasing factors for the MLE2 estimates.			
	CFAlpha.sup	Table of Confidence Bounds factors			
		for the MLE2 Weibull modulus.			
	CFBeta.sup	Table of Confidence Bounds factors			
		for the MLE2 Weibull characteristic strength.			
<installdir>\examples\</installdir>	examples	Example files described in the			
		Examples section.			
<installdir>\docs</installdir>	Guides	User Guides, Theory Guides, License			
<installdir>\license</installdir>	GetClientInfo.exe Readme.txt	Licensing Files			

Uninstall

From the Windows Control Panel click \rightarrow Add/Remove Programs.

Within the Add/Remove Programs Properties select WeibPar 4.x and click the Remove button. Some files and the directory structure require manual deletion.

Licensing

WeibPar requires a valid license. When a valid license does not exist some of the program functions are limited. The license will allow program use on a single computer for any local (non-network) user of that computer.

NOTE: WeibPar is licensed for SINGLE computer use.

Once the program has been installed follow the steps below to license the program:

NEW INSTALL -- New License Required

1. Initiate the Licensing process.

WeibPar menu: [Help | License | Client Information]

The following file will be created and displayed:

C:\Program Files\CRT Inc\WeibPar 4.0\license\WeibParClientInfo.txt

- 2. Email "WeibParClientInfo.txt" to <u>License@WeibPar.com</u>
- 3. Upon validation, the License File "WeibParLicense.txt" will be returned to you. Place it in the following directory:

C:\Program Files\CRT Inc\WeibPar 4.0\license\WeibParLicense.txt

UPGRADE INSTALL -- Existing License

Except when otherwise noted, your existing License will work with each program upgrade.

- 1. Copy the file "WeibParLicense.txt" from your previous WeibPar installation.
- 2. Paste the license file into the following directory:

C:\Program Files\CRT Inc\WeibPar 4.0\license\WeibParLicense.txt

Program Execution

1. Click Start Menu \rightarrow Programs \rightarrow WeibPar 4.x

In this location you will find shortcuts to WeibPar, the User Guide, the Theory Guides, and the License agreement.

2. Use the "File | Open" menu commands or click on the "Open" icon to open a data file. An Open dialog box will appear allowing the user to select the input data set file.

Choose one of the example data files such as

<InstallDir>\examples\fast\Uncen.dat

3. The file will be scanned for censoring information and the appropriate uncensored or censored dialog will appear.

Uncensored Time Independent Data: - The user may set:

- a. Specimen Geometry
 - i. (None)
 - ii. Tensile Specimen
 - iii. 3 pt. Bend Bar Specimen
 - iv. 4 pt. Bend Bar Specimen
 - v. Pure Bend Specimen
 - vi. User Input Effective Volume or Area
 - vii. Finite Element Model (requires CARES)
- b. Flaw Type of Volume or Surface for ii vii above
- c. Confidence Level
- d. Whether to calculate the Bootstrap bounds
- If the Advanced button is clicked the user may also
 - e. Set the Data Ranking Formula
 - f. Analyze J Integral (J_c) data
 - g. Analyze Fracture Toughness (K_{1C}) data
 - h. Set the Temperature
 - i. Fix the Weibull Modulus
 - j. Fix the Weibull Threshold
- **Censored Time Independent Data**: The user may enter specimen geometry information and the type of analysis (Volume, Surface, or Unknown) for each censored data set. Confidence Level, Bootstrap calculation, and the Data Ranking Formula options are also available.
- **Uncensored Time Dependent Data**: In addition to setting the specimen geometry and flaw type as described above, the user also sets the Time Independent or Weibull parameters. When a Weibull parameter file is open previous to opening the fatigue data, the "From Fast Fracture Data" option will be available. Otherwise the User Input option is always available.
- 4. Upon opening a valid input file, WeibPar calculates all relevant Weibull parameters or Fatigue parameters, and automatically displays and graphs the results.

- 5. Multiple data sets may be opened at the same time. Use the "Window" menu for common Multiple Document Interface (MDI) functions.
- 6. When the user opens multiple uncensored time independent data sets, the "Pool" button may be used to calculate the pooled two parameter maximum likelihood estimates (PMLE2). The first data set with specimen geometry will determine whether a volume or surface pooled analysis will be performed. All valid uncensored data sets of the same flaw population will be pooled.

Data Sets

General Structure

- Data files utilize the *.DAT or the *.TXT extension and are in the format of ASCII text files (same as *.txt).
- Blank lines and comment lines beginning with a "C" are allowed.

Time Independent Data: Also known as fast fracture data, this data typically consists of failure stresses unassociated with time information. Brittle materials fast fracture data is typically characterized by the Weibull distribution.

Uncensored Time Independent Data

- A single column of failure values
- Blank lines and comment lines are acceptable.

C	: A	'n	ex	amp	ole	Unce	enso	red	data	set			
4	11	-											
4	29)											
4	31	-											
4	34	Ł											
4	35	,											
e	etc	: .											

Censored Time Independent Data

- Two columns
 - First column contains the failure values
 - Second column specifies the censored group indicator for that failure value. The indicator may be of any character or numeric string (no spaces or special characters). If the string begins with an 'V' or an 'S' than that set will be designated as a volume or surface type flaw for subsequent assigning of specimen geometry. For example, volume, vol, vol1, vol2, etc.
- The columns may be separated by any number of spaces, tabs, or commas.
- Blank lines or comment lines are acceptable.

C Ar	n example	Censored	data	set
416	sur2			
458	voll			
520	sur2			
527	sur2			
546	voll			
561	sur2			
572	voll			
etc				

Pooled Time Independent Data

Uncensored time independent data sets as described above are utilized for the pooled data algorithm. All uncensored data sets open within WeibPar with the same flaw type are included in the pooled set when the pooled data function is initiated.

Time Dependent Data: This data typically consists of failure stresses along with information relating to time (e.g., time to failure, stressing rate, etc.).

Uncensored Time Dependent Dynamic Fatigue Data

- First Line must be "DYNAMIC FATIGUE"
- Two columns
 - o First column contains the Stress Rates in units such as Mpa/s or psi/s.
 - o Second column contains the failure values
- The columns may be separated by any number of spaces, tabs, or commas.
- The values do not have to be sorted in any particular order. WeibPar will sort them first by the stress rate and then by the failure values.
- Comment lines begin with a "C"
- Blank lines are allowed

```
DYNAMIC FATIGUE
C An example Dynamic Fatigue data set
30
     336.6
     437.7
30
30
     520.5
0.3
     336.7
    353.7
0.3
0.3 520.4
0.3 541.8
0.003 403.2
0.003 437.6
0.003 444.0
etc ...
```

Program Use

Menus

•

F	File	
0	Open	Displays the Open File Dialog, used to open data files.
0	Save Data	Displays the Save File Dialog, used for saving a data file under a different name or to save Monte Carlo generated data.
0	Close	Closes the active data set window.
0	Print	Prints the contents of the window for the active tab of the active data set.
0	Export Results	WPR – Saves the parameter estimates and the plotting information to a formatted text file. CMP – Saves the material parameter estimates to a formatted text file for use with the CARES program.
0	Export Graph	Allows the users to export the active chart to a Bitmap, Metafile, Enhanced Metafile or JPEG file.
0	[Files]	A list of previously opened files that may be used to reopen those files.
0	Exit	Exits the application.

Tools

0	Recalculate	Redisplays the Data Type dialog for reanalysis of a data set.
0	Generate Data	Opens the Generate a Data Set dialog. Uses the Monte-Carlo
		technique to randomly generate time independent data sets
		according to user input Weibull parameters.

- Pool Data
 Calculates the pooled parameter estimates given all open Uncensored Time Independent data sets of the same flaw type.
 CARES Interface
 Displays the CARES Interface window that provides advanced
- feature interaction with the CARES program.
- Set CARES.EXE... Creates the link to the CARES program.
- Window

0	Hide Parameters	This function toggles whether the left hand data view screens
		are shown or hidden.
0	Tile	Tiles the open child windows

- Cascade Cascades the open child windows
- Arrange Icons Arranges all minimized child windows to the bottom left of the Main window.
- Help

0	User Guide	Displays the User Guide PDF (Adobe Acrobat	required).

- Fast Fracture Displays the Time Independent Theory Guide PDF.
- o Time Dependent Displays the Time Dependent Theory Guide PDF.
- Ceramic Reliability Open a Web browser and links to CeramicReliability.com.
- Program Updates
 Open a Web browser and links to the download section of WeibPar.com.

0	Update Guides	Open a Web browser and links to WeibPar.com where the most current versions of the guides may be downloaded.
0	Support	Opens a Web browser and links to WeibPar.com where support information may be reviewed.
0	Terms Of Use	Opens the CRT Terms of Use Agreement.
0	License – Directions	Opens the License Readme.txt file that contains the step-by- step instructions for licensing the program.
0	License – Client Info	Creates the WeibPar Client Information file necessary for License generation.
0	About	Displays the splash screen that includes version information.

Buttons

•	Open	Displays the Open File Dialog, used to open data files.
•	Save	Displays the Save File Dialog, used for saving a data file under a different name or to save generated data.
•	Print	Prints the contents of the window for the active tab of the active data set. Used for either text pages or graphs.
•	Recalculate	Redisplays the Data Type dialog for reanalysis of a data set.
•	Pool Data	Calculates the pooled parameter estimates given all open uncensored data sets of the same flaw type.

- CARES Interface Displays the CARES Interface window that provides advanced feature interaction with the CARES program.
- Generate Data Opens the Monte Carlo dialog, used to generate random data sets according to user input Weibull parameters.

Windows and Dialogs

Main Window – Main application window. This window contains the menu system, the button icons, the child windows (Data File window and Pooled Data Window), and when [\underline{W} indow | \underline{H} ide Parameters] is not checked the top left window pane shows the parameter estimates for the active data file and the bottom left window pane shows the failure data. For censored data sets the Data pane will split the groups of data into separate columns.

_ط WeibPa						
<u>F</u> ile <u>V</u> iew	Window Help					
😕 🔒 \llbracket	B 🕒 🕐	Pool				
Specimen Analysis	3Pt Bend Surface	Outer Span 0.8	Inner Span	Height 0.06	E	D:\a_WeibPar\data\pooled\test\ss_3a.dat Image: Colored test Weibull Plot Parameters Ratio Bounds Histogram/PDF
NORMAL	DISTR.	N 18	Mean 56290	Std Dev 4839.1		Data Monte LIN 2 MLE 2 UB CB RB LIN 3 MLE
WEIBULL	DISTR.	Rank Form	(i - 0.5) / n			Weibull Chart
T W 0 LIN2 MLE2 Exact 90% Conf Ratio Bnds 90% Conf	PARAMETER Biased Unbiased Lower Upper Lower Upper	M 14.146 14.567 13.417 9.7696 18.58 10.411 19.53	Sig Not 39791 40179	Char Str 58361 58398 58290 56637 60226 56664 60083	L -1" -17" -17"	
THREE LIN3 MLE3	PARAMETER Biased Biased	M : :	Sig Not - -	Threshold - -	L •	-5
DATA 1 2	Set #0 46979.000 48657.000					-6 -2 45,000 50,000 55,000 60,000 65,000 Fracture Stress
3 4 5	50894.000 51890.000 52265.000					
6 7 8	53002.000 54120.000 56114.000				•	35,000 40,000 45,000 Fracture Stress
						. (i - 0.5) / n

The main window and all its components are sizeable. The program will track and restore the user's settings (sizes and positions).

Analysis Options Dialog – Time Independent: This dialog is displayed after opening a data file or updating (reanalyzing) a data file. The program recognizes whether the data set is uncensored or censored and configures itself accordingly.

Analysis Options - TRY - 1101		×
Type of Data © Uncensored Data C Censored Data Data Sets = 1	Tensile Sp	angular
Failure Data Flaw Type Tensile Specimen ✓ Confidence 90 %	Length Depth Base	2.5 0.25 0.25
Data <u>B</u> anking Formula (i - 0.5) / n ▼ Set Data Type ⓒ <u>F</u> ailure Data (Default) ⓒ <u>J</u> - Integral (J _C) ⓒ Fracture Toughness (K _{IC}) Fixed Weibull Modulus = 9 ⓒ Fixed Weibull Ihreshold = 300		
OK		

Use the Advanced and Simplified buttons to reveal or hide the advanced options.

For uncensored data sets the user has a choice of failure data, J Integral data or Fracture Toughness (K_{IC}) data. Failure Data additionally consists of the following types: Raw data, Tensile specimen, 3 Point Bend Bar specimen, 4 Point Bend Bar specimen, Pure Bend specimen, and a User option of directly inputting the Effective Volume or Area. As each of these specimen types are selected the user is prompted for the appropriate dimensions and the type of flaw that the data set represents.

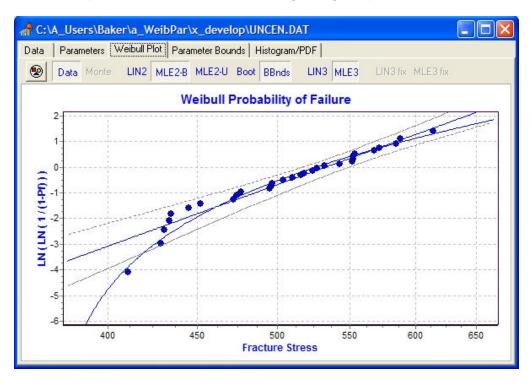
The Confidence Level allows the user to choose which level to calculate the confidence bounds for the Exact method (from the Thoman, Bain, and Antle tables), the Likelihood Ratio method based on the χ^2 distribution, and the Bootstrap method.

The Data Ranking Formula option is used both in the plotting of the data sets and in the linear regression estimator algorithm.

The J Integral and Fracture Toughness (K_{IC}) data represent special cases where the Weibull moduli are fixed known values, 2 and 4 respectively. The user may additionally choose to have the parameter estimates for a data set calculated given either a fixed Weibull Modulus or a fixed Threshold value.

Analysis Options Dialog – Time Dependent: For time dependent data the specimen geometry section is the same as described above. Note that the following discussion references a specific type of time dependent data, i.e., dynamic fatigue (or the application of a monotonically increasing load until failure).

Type of Data • Uncensored Data Data Sets = 1	Bend Bar Sp	ecimen
C Censored Data	O <u>u</u> ter Span	40
Specimen Geometry	Inner Span	20
4 Point Bend	<u>H</u> eight	3
	<u>B</u> ase	4
Confidence 90 % 💽 🗖 Calculate Bootstrag Weibull Parameters © User Input © From Fast Fracture Data	10	
Weibull Modulus 7.6		
Weibull Material Scale 867		
Fast Fracture Data Set		
1		


The Weibull parameters section is used in conjunction with the specimen geometry to calculate the time dependent material parameters. Without the fast fracture parameters, the calculated time dependent parameters are specimen specific not material specific.

To link the fast fracture parameters from a data set:

- 1. First open and evaluate the fast fracture data set.
- 2. Next open a time dependent data set. The "From Fast Fracture Data" option will be available.

Notes: If multiple fast fracture data files are open the "active" window will be linked. To link to another fast fracture data file, the time dependent data set must be closed and reopened.

Weibull Data File Window – For each fast fracture data set that is opened, a Weibull Data File Window will be displayed. The Filename is listed across the top border of the window. The tabs located below the top border contain information regarding the parameter estimation results.

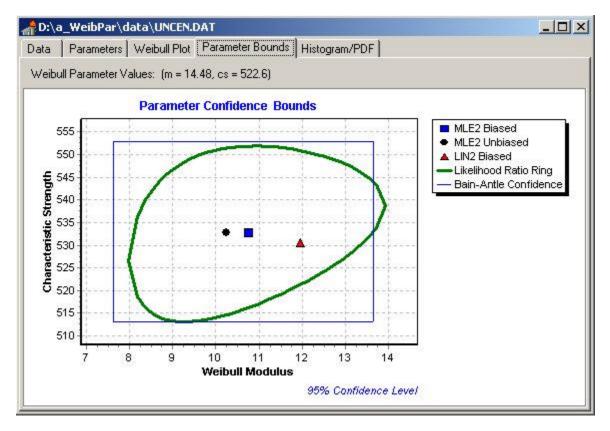
The 'Weibull Plot' tab displays a graphical representation of the data set and its parameter estimates. Options for this plot include hiding and showing particular parameter estimates and/or the failure data. In the example above, along with the failure data, the biased MLE 2 or maximum likelihood two parameter estimates (blue straight line) and the MLE 3 (blue curve) are shown along with the Bootstrap confidence bounds.

Additional plotting options include the two parameter linear regression line, the unbiased MLE 2 line, MLE2 Bootstrap line estimate, the three parameter linear regression line, and when the user supplies a fixed threshold value the LIN 3 fix and MLE 3 fix lines will also be available.

Use the 🙆 icon to edit the chart.

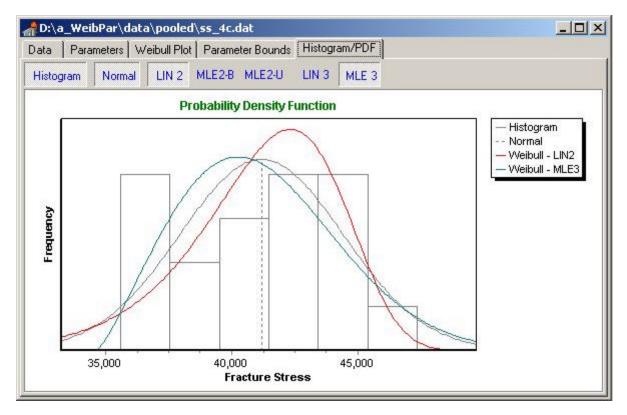
The Chart title, the X-axis title, and the minimum and maximum values for the X-axis may be modified. The X-axis values must encompass the data.

Clear the entry to reset any of the values to their defaults.

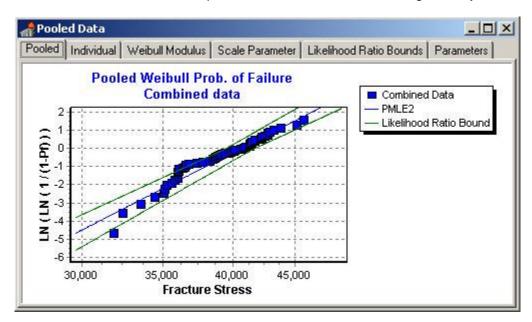

Edit the Weibull Chart 🛛 🛛 🔁				
Chart Title 🛛	eibull Probability of Failure			
Title	Fracture Stress			
Minimum Maximum				
	🗸 OK 🕺 🗶 Can	cel		

∯D:∖a_Weib Data Param	eters Weibull P	and the second se	ounds Histogra	m/PDF		
FileName	State of the second	r\data\UNCEN	DAT			
Specimen Analysis	Raw Data					
NORMAL	DISTR.	N	Mean	Std Dev		
		30	508.7	54.23		
WEIBULL	DISTR.	Rank Form	(i - 0.5) /	n		
тшо	PARAMETER	M	Sig Not	Char Str	k	Eff
LIN2	Biased	11.9591	530.46	530.46	1	1
MLE2	Biased	10.748	532.67	532.67	1	1
	Unbiased	10.2432		532.72	1	1
	Boot UB	10.2377		533.36	1	1
Bain	Lower	7.63894		513.11	1	1
95% Conf	Upper	13.6396		552.86	1	l
Boot	Lower	8.21674		511.86	l	1
95% Conf	Upper	14.6047		551.1	1	1
Ratio Bnds	Lower	7.98821		513.16	l	1
95% Conf	Upper	13.9187		551.88	1	l
THREE	PARAMETER	M	Sig Not	Threshold		
LINS	Biased	3.15009	173.19	353.75		
MLES	Biased	2.91443	156.44	369.48		
USER SET	THRESHOLD	м	Sig Not	Threshold		
LIN3f	Biased	4.40196	228.8	300		
MLE3f	Biased	4.47469	229.2	300		
GOODNESS	OF FIT	LNL	SSR	R	AZ	OSL
Normal					0.28152	0.52604
LIN2	Biased	-162.662	0.019331	0.94281	0.45397	0.24876
MLE2	Biased	-162.191	0.023421	0.93072	0.24987	0.64504
	Unbiased	-162.255	0.028686	0.91514	0.22706	0.69499
	Boot UB	-162.266	0.028535	0.91559	0.2336	0.68079
LING	Biased	-161.413	0.0067923	0.97991	0.26344	0.61485
MLES	Biased	-161.349	0.0074912	0.97784	0.3382	0.45154
LIN3f	Biased	-161.561	0.0086209	0.9745	0.23562	0.67639
MLE3f	Biased	-161.554	0.0087269	0.97418	0.25037	0.64392

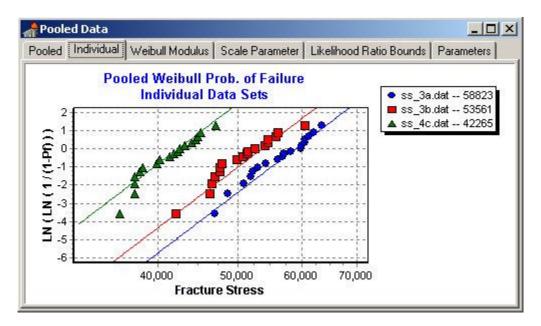
The 'Parameters' tab contains a printout of the calculated statistics along with the geometry and other options that were setup in the Analysis Options dialog for this data set. The parameters are described below. For further details please refer to the Time Independent Theory Guide.


M, Sig Not, Char Str Weibull Slope, Weibull Material Scale, and Characteristic Strength parameters respectively.
 k, Eff Specimen Geometry Constant and Effective Volume (or Area) typically signified by kV (or kA).

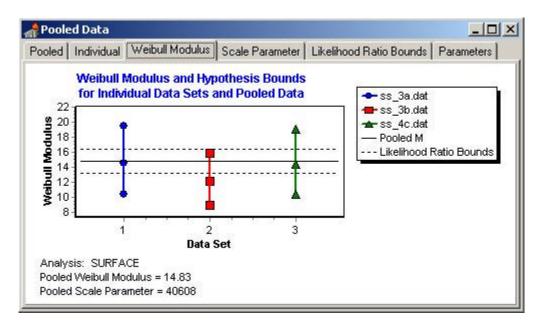
LIN2, LIN3, LIN3f	Linear Regression estimation for 2 parameter, 3 parameter and 3 parameter with a fixed threshold.
MLE2, MLE3, MLE3f	Maximum Likelihood estimation for 2 parameter, 3 parameter and 3 parameter with a fixed threshold.
Bain, Boot, Ratio	Upper and Lower confidence bounds on the parameter estimates from the Bain, Antle, Thoman tables, from the Boostrap technique, and from the Likelihood Ratio technique.
LNL, SSR	Natural Log of the Likelihood and the Sum of the Squared Residuals.
R, A2, OSL	Regression Coefficient, Anderson Darling, Significance Level

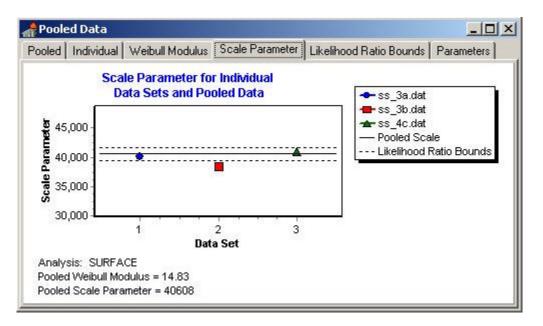

The 'Parameter Bounds' tab shows the confidence bounds around the parameter estimates. In this case there is 95% confidence that the true population parameters fall within the bounds. The ring was calculated by the Likelihood Ratio technique. The rectangle was calculated via the Bain, Antle, Thoman confidence tables. The extremes of these bounds are reported on the 'Parameters' page discussed previously.

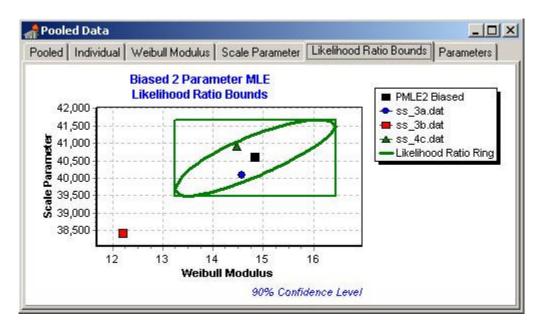
The 'Weibull Parameter Values' reveals the Weibull parameters for the current mouse location as the user moves the mouse over the graph.



The 'Histogram/PDF' tab shows the histogram for the data set, the probability density function (PDF) for the normal distribution, and the PDF for each of the Weibull distribution estimates. Once again the user can choose which components to hide and which to show. Above the histogram, the normal PDF, the LIN2 PDF, and the MLE3 PDF are plotted.

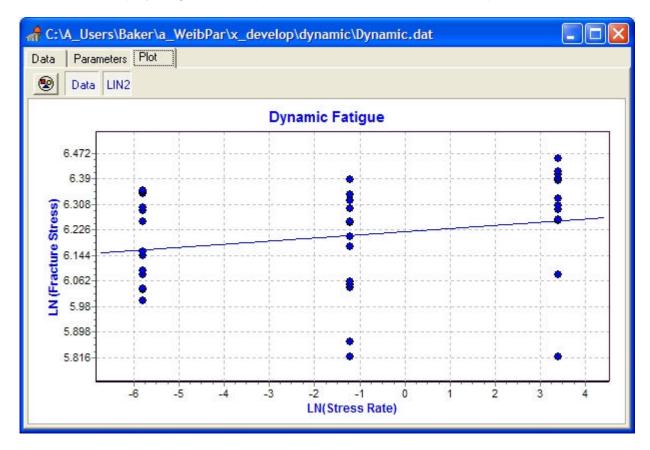

Pooled Data Window – The pooled data windows displays the results of pooling multiple Uncensored data sets that are of the same flaw type (volume or surface). The technique for pooling data utilizes the maximum likelihood estimation for two parameter Weibull distributions. The following screen shots demonstrate the pooling of three data sets each containing 18 failure stresses. The first two data sets are three point bend bar data with two different geometries. The third data set is four point bend bar data with a third geometry.


The 'Pooled' tab shows the result of transforming the pooled failure data each according to its own geometry into the geometry independent space. In this space the pooled data may be plotted as one data set against the estimates of the Weibull modulus and the material scale parameters.


The 'Individual' tab displays the three data sets in the geometry dependent space. The estimated lines each share the common slope of the pooled Weibull modulus. The unique characteristic strength values are a function of the pooled material scale parameter, the pooled modulus, and the geometry of each data set.

The 'Weibull Modulus' tab shows the individual data set Weibull moduli with error bars based on the likelihood ratio confidence bounds. The solid horizontal line is the pooled Weibull modulus with its confidence bounds represented by the dashed horizontal lines. The confidence bounds on the pooled modulus are tighter than the individual data set bounds because there is more data (54 points) in the pooled data set.

The 'Scale Parameter' tab plots the individual data set scale parameters against the pooled scale parameter. Confidence bounds for the individual data sets were calculated on the characteristic strength parameter. These confidence bounds cannot be readily transformed into confidence bounds on the individual data set scale parameters; therefore, error bars representing confidence bounds are not plotted for the individual data sets.


The 'Likelihood Ratio Bounds' tab shows a confidence ring around the parameter estimates, in this case the 90% confidence ring. The individual data set parameter estimates are also plotted. This graph basically combines the previous two graphs. The rectangle around the ring defines the extremes of the ring. These extremes are reported in the parameters section.

POOLED DATA				
Analysis SURFACE				
PMLE2 Biased				
	N	M	Sig Not	LnL
POOLED	54	14.83	40608	-526.57
Ratio Bnds Upper		16.443	41675	
90% Conf Lower		13.243	39487	
Individual	N	Char Str		
ss_3a.dat	18	58823		
ss_3b.dat	18	53561		
ss 4c.dat	18	42265		

The 'Parameters' tab shows the parameter estimation results for the pooled data.

Time Dependent Data File Window – For each data set that is opened, a Time Dependent Data File Window will be displayed.

The 'Plot' tab displays a graphical representation of the data set and its parameter estimates.

Use the 🙆 icon to edit the chart.

The Chart title, the X-axis title, and the minimum and maximum values for the X-axis may be modified. The X-axis values must encompass the data.

Clear the entry to reset any of the values to their defaults.

dit the Time	Dependent Chart	×
Chart Title	ynamic Fatigue	
X Axis		
Title	LN(Stress Rate)	
Minimum		
Maximum		
		Cancel
		Cancel

The 'Parameters' tab contains a printout of the calculated statistics along with the geometry and other options that were setup in the Analysis Options dialog for this data set. The parameters are described below. For further details please refer to the Time Dependent Theory Guide.

- N, D The specimen specific or raw data parameters. N is the fatigue exponent and D is the Y-intercept.
- M, SP, N, B, Eff Weibull Slope, Weibull Material Scale, Fatigue Exponent, Fatigue geometry independent material parameter, and the Effective volume or area based on M and N, respectively.

Specimen	4_Pt_Bend	Outer	Inner	Height	Base	Gage Vol	~
Analysis	Volume	40	20	3	4	480	
	Stress	Data		Standard			1
	Rate	Points	Mean	Deviation	Skewness	Kurtosis	
	0.003	13	490.126	64.2259	0.0768211	-1.75263	
	0.3	13	Contraction of Acade	81.0722			
	30	12		83.5643			
SPECIMEN	Specific						
	Time	Fatigue	Fatigue				
	Method	N	D				
	LIN2	98.3111	502.828				
MATERIAL	Specific						
Weibull	Time	Weibull	Weibull	Fatigue	Fatigue		
Method	Method	М	SP	N	в	Eff Vol	
 LIN2	LIN2	7.30115	844.615	98.3111	225.508	15.8761	
MLE2	LIN2	9.68208	741.859	98.3111	148.81	12.0394	

The 'Data' tab displays the data file and provides access to editing the data through the Windows Notepad editor and subsequent refreshing (reanalyzing) of the data.

	Rate	Stress	
1	0.003	403.29	1
2	0.003	417.23	
3	0.003	418.21	
4	0.003	437.68	
4 5	0.003	444.04	
6	0.003	465.2	
6 7	0.003	472.34	
	0.003	519	
8 <u>9</u>	0.003	538.13	
10	0.003	542.83	
11	0.003	568.83	
12	0.003	571.47	
12 13	0.003	573.39	
14	0.3	336.66	
15	0.3	353.7	
16	0.3	420.79	
17	0.3	424.31	
18	0.3	427.96	
18	0.0	470 ED	

Generate Data Dialog – This dialog prompts the user for the input parameters necessary for the generation of a Weibull distribution failure data set. The threshold value may be set to zero to simulate a two parameter Weibull distribution.

Generate a Data Set - Monte Carlo	×
Enter the Weibull Distribution Par	ameters
Number of Data points (5 - 500):	25
Weibull Modulus (Alpha or m):	7
Char. Strength (Beta or Sigma-Theta):	600
Weibull Threshold (Gamma or Sigma-Mu):	100
Perform Bootstrap Calculations	
V OK X Cancel	

EXAMPLES

Example files have been provided in the following directory:

<InstallDir>**examples**\

Open the files in a text editor such as the Windows Notepad in order to view comments about each example. Information such as specimen geometry is provided.

Subdirectory	File	Description
<installdir>\examples\</installdir>		-
\fast	Uncen.dat Uncen3a.dat Uncen3b.dat Censor.dat	Uncensored data set. 3 parameter uncensored 3 parameter uncensored Censored data set.
\fast\pooled	ss_3a.dat ss_3b.dat ss_3c.dat ss_4a.dat ss_4b.dat ss_4c.dat ten-1.dat ten-2.dat ten-3.dat	3 point bend – geometry a 3 point bend – geometry b 3 point bend – geometry c 4 point bend – geometry a 4 point bend – geometry b 4 point bend – geometry c Tensile specimen – geometry 1 Tensile specimen – geometry 2 Tensile specimen – geometry 3
\dynamic	Dynamic.dat Fast uncen.dat Fast censor.dat	Uncensored Dynamic Fatigue Uncensored Fast Fracture Data Censored Fast Fracture Data
\Jint	JC-80.dat	J-Integral data set.