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A 

THEORY: PARAMETER ESTIMATION 

A.1 INTRODUCTION 

 The WeibPar program that accompanies this discussion produces estimated values for 
unknown Weibull distribution parameters based on observations recorded in strength to failure 
tests.  The program and estimation methods are applicable to ceramic materials (monolithic or 
composite) that do not exhibit any appreciable bilinear or nonlinear deformation behavior.  If the 
techniques are applied to failure data from composite materials then the composite must contain 
a uniformly distributed second phase (e.g., whiskers, short fibers, etc.) such that the composite is 
effectively homogeneous.  In essence the material must behave in a linear elastic, brittle fashion 
if the user wishes to analyze the failure data by the methods that follow. 

 Strength measurements are taken for one of two reasons: either for a comparison of the 
relative quality of two materials, or for the prediction of the failure probability for a structural 
component.  The analytical details provided here allow for either.  In order to obtain point estimates 
of the unknown Weibull distribution parameters, well-defined functions are utilized that incorporate 
the failure data and specimen geometry.  These functions are referred to as estimators.  It is 
desirable that an estimator be consistent and efficient.  In addition, the estimator should produce 
unique, unbiased estimates of the distribution parameters.  Different types of estimators exist, 
including moment estimators, least-squares estimators, and maximum likelihood estimators.  This 
discussion initially focuses on maximum likelihood estimators (MLE) due to the efficiency and the 
ease of application when censored failure populations are encountered.  The likelihood estimators 
are used to compute parameters from failure populations characterized by a two parameter Weibull 
distribution.  Alternatively, non-linear regression estimators (discussed later) are utilized to calculate 
unknown distribution parameters for a three parameter Weibull distribution.  Basically, this entire 
discussion provides a theoretical background for the calculation of parameter estimates that take 
place within the WeibPar program. 

 Many factors affect the estimates of the distribution parameters.  The total number of test 
specimens plays a significant role.  Initially, the uncertainty associated with parameter estimates 
decreases significantly as the number of test specimens increases.  However a point of diminishing 
returns is reached when the cost of performing additional strength tests may not be justified.  This 
suggests that a practical number of strength tests should be performed to obtain a desired level of 
confidence associated with a parameter estimate. This point can not be overemphasized.  However, 
quite often 30 specimens (a widely cited rule-of-thumb) is deemed a sufficient quantity of test 
specimens when estimating Weibull parameters.  One should immediately ask why 29 specimens 
would not suffice.  Or more importantly, why is 30 specimens sufficient?  The answer to this is 
addressed in a later section where the details of computing confidence bounds for the maximum 
likelihood estimates (these bounds are directly relate to the precision of the estimate) are presented.  
Confidence bounds for the non-linear regression estimators are not available for reasons cited in 
reference [1]. 

 Tensile and flexural specimens are the most commonly used test configurations for ceramic 
materials.  However, most ceramic material systems exhibit a decreasing trend in material strength 
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as the test specimen geometry is increased (the so-called size effect).  Thus the observed strength 
values are dependent on specimen size and geometry.  Parameter estimates can be computed based 
on a given specimen geometry, however, the parameter estimates should be transformed and 
utilized in a component reliability analysis as material-specific parameters.  The procedure for 
transforming parameter estimates for the typical specimen geometries just cited is outlined later in 
the section entitled "Material Specific MLE Parameters."  The user should be aware that the 
parameters estimated using non-linear regression estimators are material specific parameters.  
Therefore no transformation is necessary after these parameters have been estimated. 

 

 Figure A.1   Uncensored Sample that possibly demonstrates multiple failure populations. 

 Advanced ceramics typically contain two or more active flaw distributions (e.g., failures due 
to inclusions or machining damage) and each will have its own strength distribution parameters.  
The censoring techniques presented here for the two-parameter Weibull distribution require positive 
confirmation of multiple flaw distributions, which necessitates fractographic examination to 
characterize the fracture origin in each specimen.  Multiple flaw distributions may also be indicated 
by a deviation from the linearity of the data from a single Weibull distribution (e.g., Figure A.1).  
However observations of approximately linear behavior should not be considered a sufficient reason 
to conclude a single flaw distribution is active.  The reader is strongly encouraged to integrate 
mechanical failure data and fractographic analysis. 
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 Figure A.2   Censored Sample with multiple failure populations identified. 

 As was just noted, discrete fracture origins are quite often grouped by flaw distributions.  
The data for each flaw distribution can also be screened for outliers.  An outlying observation is one 
that deviates significantly from other observations in the sample.  The reader should understand that 
an apparent outlying observation may be an extreme manifestation of the variability in strength.  If 
this is the case, the data point should be retained and treated as any other observation in the failure 
sample.  However, the outlying observation may be the result of a gross deviation from prescribed 
experimental procedure, or possibly an error in calculating or recording the numerical value of the 
data point in question.  When the experimentalist is clearly aware that either of these situations has 
occurred, the outlying observation may be discarded, unless the observation (i.e., the strength value) 
can be corrected in a rational manner.  The procedures for dealing with outlying observations are 
available elsewhere in the literature [2].  For the sake of brevity this discussion omits any discussion 
on the performance of fractographic analyses, and omits any discussion concerning outlier tests.  
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A.2 THE WEIBULL DISTRIBUTION 

 Experimental data indicates that the continuous random variable representing uniaxial 
tensile strength of advanced ceramics is asymmetrical about the mean and will assume only positive 
values.  These characteristics rule out the use of the normal distribution (as well as others) and point 
to the use of the Weibull distribution or a similarly skewed distribution.  The three-parameter 
Weibull probability density function for a continuous random strength variable, denoted as Σ, is 
given by the expression 
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for σ  ≤ γ.  In equation (A.1) α is the Weibull modulus (or the shape parameter), β  is the Weibull 
scale parameter, and γ is a threshold parameter.  The cumulative distribution is given by the 
expression 

 


















 −
−Σ β

γσ
σ

α

- = )(F exp1  (A.3) 

for σ  > γ, and 

 0 = )(F σΣ  (A.4) 

for σ  ≤ γ. 

 Often the value of the threshold parameter is taken to be zero.  In component design this 
represents a conservative assumption, and yields the more widely used two-parameter Weibull 
formulation.  Here the expression for the probability density function simplifies to 
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for σ  ≤ 0.  The cumulative distribution simplifies to 

 F ( ) =  -Σ σ
ασ

β
1 −























exp   (A.7) 

for σ  > γ, and 

 F ( ) =  Σ σ 0   (A.8) 

for σ  ≤ γ.  Note that in the ceramics literature when the two parameter Weibull formulation is 
adopted then "m" is used for the Weibull modulus α, and either σ0 or σθ (see the discussion below 
regarding the difference between σ0 and σθ) is used for the Weibull scale parameter.  The WeibPar 
program uses "M", "Sig Not", and "Char Str" to notate the parameter estimates in the two parameter 
formulation, and the program uses "M", "Sig Not", and "Threshold" for the three parameter 
formulation.  In the discussion that follows the (α, β , γ) notation is used exclusively and reference is 
made to the typical notation adopted in the ceramics literature.  The reason for this is the tendency to 
overuse the "σ" symbol (e.g., σθ, σ0, σi-failure observation, and σt-threshold stress, etc.).  
Throughout this discussion the symbol "σ" will imply applied stress. 

 If the random variable representing uniaxial tensile strength of an advanced ceramic is 
characterized by a two-parameter Weibull distribution, i.e., the random strength parameter is 
governed by equations (A.5) and (A.6), then the probability that a uniaxial test specimen fabricated 
from an advanced ceramic will fail can be expressed by the cumulative distribution function 

 Pf =  -1 −
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Note that σmax is the maximum normal stress in the component.  The parameter βθ  is the Weibull 
characteristic strength which is a location parameter dependent on the type of uniaxial test 
specimen (e.g., tensile, flexural, or pressurized ring)  utilized.  Thus βθ (which has units of stress) 
will change with specimen geometry and stress gradients in the test specimen.  In the ceramics 
literature this parameter would correspond to σθ for the two parameter formulation.  An alternative 
expression for the probability of failure was derived by Weibull and expressed as 
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V

1 − −






















∫exp
α

θ

σ
β

  (A.10) 

This integration is performed over all tensile regions of the specimen volume if the strength-
controlling flaws are randomly distributed through the volume of the material, or over all tensile 
regions of the specimen area if flaws are restricted to the specimen surface.  The Weibull material 
scale parameter β0 for volume defects has units of [stress ⋅ (volume)1/α].  If the strength 
controlling flaws are restricted to the surface of the specimens in a sample, then the Weibull 
material scale parameter has units of [stress ⋅ (area)1/α].  This parameter corresponds to σ0 in the 
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ceramics literature for the two parameter formulation of the Weibull distribution.  From a 
computational standpoint an estimate for βθ  is obtained from the failure data.  This value is 
converted to an equivalent β0 value.  To perform this transformation equations (A.9) and (A.10) 
can be equated for the test specimen geometry.  The resulting expression yields a relationship 
between β0 and βθ for that specific specimen geometry.  Expressions for the tensile specimen 
geometry and flexural specimen geometry appear later in this appendix. 
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A.3 MAXIMUM LIKELIHOOD ESTIMATORS 

 The maximum likelihood technique has certain advantages, especially when parameters 
must be determined from censored failure populations.  When a sample of test specimens yields two 
or more distinct flaw distributions, the sample is said to contain censored data.  The methods 
described in this discussion include censoring techniques that apply to multiple concurrent flaw 
distributions.  A concurrent flaw distribution is found in a homogeneous material if every test 
specimen fabricated from that material contains representative flaws from each independent flaw 
population.  Within a given specimen all flaw populations are present concurrently, and the flaw 
distributions are competing with each other to cause failure.  Thus this term is synonymous with 
“competing flaw distributions.”  The methods for parameter estimation presented in this discussion 
are not applicable to data sets that contain exclusive or compound multiple flaw distributions (see 
[3] for a more detailed discussion on this topic).  A simple example of a compound flaw distribution 
is where every specimen contains the flaw distribution A, while some fraction of the specimens also 
contains a second independent flaw distribution B.  An exclusive flaw distribution is a type of 
multiple flaw distribution created by mixing and randomizing specimens from two or more versions 
of a material where each version contains a different single flaw population.  Thus, each specimen 
contains flaws exclusively from a single distribution, but the total data set reflects more than one 
type of strength-controlling flaw. 

 The parameter estimates obtained using the maximum likelihood technique are unique (for a 
two-parameter Weibull distribution), and as the size of the sample increases, the estimates 
statistically approach the true values of the population.  Let σ1, σ2, ⋅⋅⋅  , σn represent the ultimate 
strength (a random variable) of the ceramic test specimens in a given sample.  It is assumed that 
the ultimate strength is characterized by the two-parameter Weibull distribution.  The likelihood 
function associated with this sample is the joint density of the N random variables, and thus is a 
function of the unknown Weibull distribution parameters (α,β).  The likelihood function for a 
censored sample under these assumptions is given by the expression 
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This expression can be applied to a sample where two or more concurrent flaw distributions have 
been identified from fractographic inspection.  For the purpose of discussion consider different 
distributions identified as flaw types A, B, C, etc.  When equation (A.11) is used to estimate the 
parameters associated with the type-A flaw distribution, then r is the number of specimens where 
type-A flaws were found at the fracture origin, and i is the associated index in the first summation.  
The second summation is carried out for all other specimens not failing from type-A flaws (i.e., 
type-B flaws, type-C flaws, etc.).  Therefore the sum is carried out from ( j=r+1) to N (the total 
number of specimens) where j is the index in the second summation.  Accordingly, σi is the ith 
failure stress for specimens associated with type-A flaws.  In a similar fashion σj is associated 
with the other flaw types present.  The likelihood function for the two-parameter Weibull 
distribution for a single flaw population is defined by the expression 
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where r was taken equal to N in equation (A.11).  The parameter estimates for the Weibull modulus 
and the characteristic strength  are determined by taking the partial derivatives of the logarithm 
of the likelihood function with respect to α~  as well as θβ

~
 and equating the resulting expressions 

to zero.  The system of equations obtained by differentiating the log likelihood function for a 
censored sample is given by [4] 
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Once again r is the number of failed specimens from a particular group of a censored sample.  Thus 
when a sample does not require censoring, r is replaced by N in equations (A.13) and (A.14).  The 
WeibPar program numerically solves equation (A.13) first since a closed form solution for α~  can 
not be obtained from this expression.  Once α~  is determined this value is inserted into equation 
(A.14) and θβ

~
 is calculated directly. 

 

 



 
 
WeibPar Theory – Time Independent   Connecticut Reserve Technologies, Inc. 

____________________________________________________________________________________________ 
July 2005  Page 10 

A.4  MATERIAL SPECIFIC MLE PARAMETERS 

 Relationships between the estimate of the Weibull characteristic strength and the Weibull 
material scale parameter for any specimen configuration can be derived by equating the expressions 
given by equations (A.9) and (A.10) with the modifications that follow.  Begin by performing the 
integration given in equation (A.10) such that 

 P  =  kVf 1 − −




















exp max
ασ

β
 (A.15) 

Here k is a dimensionless constant that accounts for specimen geometry and stress gradients [3].  
Note that in general, k is a function of the estimated Weibull modulus α~ , and is always less than 
or equal to unity.  The product kV is often referred to as the effective volume (with the 
designation VE ).  The effective volume can be interpreted as the size of an equivalent uniaxial 
tensile specimen that has the same risk of rupture as the test specimen or component.  As the term 
implies, the product represents the volume of material subject to a uniform uniaxial tensile stress.  
Setting equations (A.9) and (A.10) equal to one another yields the following expression 

 ( ) ( ) ( )VVo
VkV θ

α ββ
~~ ~/1=  (A.16) 

where the subscript V attached to the parameter estimates denotes a volume integration.  Thus for 
an arbitrary test specimen, the experimentalist evaluates the integral identified in equation (A.10) 
for the effective volume (kV), and utilizes equation (A.16) to obtain the estimated Weibull 
material scale parameter 0

~
β .  A similar procedure can be adopted when fracture origins are 

spatially distributed at the surface of the test specimen. 

 As an example, the following equation defines the relationship between the parameters for 
tensile specimens 

 ( ) ( ) ( )VVo
VV θ

α ββ
~~ ~/1=  (A.17) 

where V is the volume of the uniform gage section of the tensile specimen, and the fracture origins 
are spatially distributed within this volume.  For a tensile specimen in which fracture origins are 
spatially distributed at the surface of the specimens tested, 

 ( ) ( ) ( )AAo
AA θ

α ββ
~~ ~/1=  (A.18) 

where A is the surface area of the uniform gage section. 

 For flexural specimen geometries, the relationships become more complex.  The following 
relationship is based on the geometry of a flexural specimen found in Figure A.3.  For fracture 
origins spatially distributed within both the volume of a flexural specimen and the outer load span  
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where Li is the length of the inner load span, Lo is the length of the outer load span, and V is the 
volume of the gage section defined by the expression  

 V b d Lo=  (A.20) 

The dimensions b and d are identified in Figure A.3.  For fracture origins spatially distributed at the 
surface of a flexural specimen and within the outer load span, 
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Figure A.3  Geometry for a flexural test specimen. 
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Table A.1  Silicon Nitride Fracture Stress Data Utilized in Maximum Likelihood Estimation 
 Specimen Stress Specimen Stress Specimen Stress 

 1  411.0 MPa  11  495.0 MPa  21  543.0 MPa 

 2  429.0 MPa  12  496.0 MPa  22  552.0 MPa 

 3  431.0 MPa  13  497.0 MPa  23  553.0 MPa 

 4  434.0 MPa  14  504.0 MPa  24  553.0 MPa 

 5  435.0 MPa  15  510.0 MPa  25  554.0 MPa 

 6  445.0 MPa  16  516.0 MPa  26  568.0 MPa 

 7  452.0 MPa  17  518.0 MPa  27  572.0 MPa 

 8  472.0 MPa  18  524.0 MPa  28  585.0 MPa 

 9  474.0 MPa  19  527.0 MPa  29  588.0 MPa 

 10  477.0 MPa  20  532.0 MPa  30  614.0 MPa 

 
 

 
 
Figure A.4  Silicon nitride failure data (see Table A.1) and the probability of failure curve (blue 

line) based on estimated values Maximum likelihood estimators of the Weibull 
parameters.  The 95% confidence bounds (black curves) based on the Bootstrap 
technique are also shown. 
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 In order to demonstrate how the previous discussion is utilized, consider the failure data in 
Table A.1.  The data represent the maximum stress at failure for bend specimens (four-point) 
fabricated from HIP'ed (hot isostatically pressed) silicon nitride [5].  The solution of equation (A.13) 
requires an iterative numerical scheme.  Using the WeibPar program a parameter estimate for the 
Weibull modulus of α~  = 10.75 was obtained.  Subsequent solution of equation (A.14) yields a 
value of θβ

~
 = 533 MPa.  These values for the Weibull parameter estimates were generated by 

assuming a unimodal failure sample with no censoring (i.e., r = N).  Figure A.4 depicts the 
individual failure data and a curve based on the estimated values of the parameters.  Next, 
assuming that the failure origins were distributed at the surface of the specimens and then 
inserting the estimated values of α~  and θβ

~
 into equation (A.21) along with the specimen 

geometry (i.e., Lo = 40 mm, Li = 20 mm, d = 3 mm, and b = 4 mm) yields ( 0
~
β )A = 811.6 MPa × 

(m2)1/10.75.  Alternatively, if one were to assume that the failure origins were volume distributed, 
then the solution of equation (A.19) yields ( 0

~
β )V = 666.3 MPa × (m3)1/10.75.  The different values 

obtained from assuming surface and volume fracture origins underscore the necessity of conducting 
a fractographic analysis. 
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A.5 UNBIASING FACTORS AND CONFIDENCE INTERVALS FOR  
MAXIMUM LIKELIHOOD ESTIMATES 

 If all failures from a group of observations originate from a single flaw distribution an 
unbiased estimate of the Weibull modulus can be computed.  Procedures for bias correction and 
computing confidence intervals in the presence of multiple active flaw populations are not well 
developed at this time.  In addition, unbiasing factors and parameters utilized to establish confidence 
bounds are only available for likelihood estimates of the two-parameter Weibull distribution.  
Statistical bias can be defined numerically in the following manner.  Consider distributions of point 
estimates generated numerically using Monte Carlo techniques.  These distributions are obtained by 
numerous computer generated samples and the resulting point estimates are ranked for each sample 
size.  If the mean value of the ranked data is equal to the expected value of the true parameter for a 
given sample size, the estimator is said to be unbiased. 

 If an estimator yields biased results the value of the individual estimates can be corrected if 
the estimators are invariant (see Thoman et al. [6] for a proof of invariance for the two-parameter 
maximum likelihood estimators presented earlier).  The bias associated with the estimate of the 
characteristic strength is minimal (<0.3% for 20 test specimens, as opposed to ≅ 7% bias for α~  with 
the same number of specimens), and is usually ignored.  However, the WeibPar program enables 
allows for the unbiasing of the Weibull modulus and the Weibull characteristic strength.  The 
user should also keep in mind that statistical bias associated with the maximum likelihood 
estimators presented here can always be reduced by increasing the sample size. 

 The amount of deviation between the biased estimate and the expected value of the true 
parameter can be quantified either as a percent difference or with unbiasing factors.  In keeping with 
the accepted practice in the open literature, statistical bias is quantified in the WeibPar program 
through the use of unbiasing factors (denoted as UF).  Unbiasing factors (as well as the ratios used 
to compute upper and lower bounds for a confidence interval) are obtained from the ranked 
distributions of point estimates mentioned above.  In the WeibPar program these unbiasing factors 
are located in "look-up" tables that are accessed directly by the program.  The program computes 
unbiased values of α~  and θβ

~
 directly, i.e., this calculation is transparent to the user.  The user 

should note that the "look-up" tables of unbiasing factors for α~  and θβ
~

 in the WeibPar program 
are far more extensive than the tables published in reference [8]. 

 As an example of computing unbiased estimates of the Weibull modulus consider the same 
unimodal failure sample presented in Table A.1.  The sample contained 30 specimens and the 
biased estimate of the Weibull modulus was determined to be α~  = 10.75.  The unbiasing factor 
corresponding to this sample size is UF = 0.953 (obtained from the "look-up" tables).  Thus, the 
unbiased estimate of the Weibull modulus is given as 

 ( )( )
24.10

953.075.10

~~

=
=

×= UFU αα

 (A.22) 



 
 
WeibPar Theory – Time Independent   Connecticut Reserve Technologies, Inc. 

____________________________________________________________________________________________ 
July 2005  Page 15 

 Confidence intervals quantify the uncertainty associated with a point estimate of a 
population parameter.  The size of a confidence interval for maximum likelihood estimates of both 
Weibull parameters will diminish with increasing sample size.  The values used to construct a 
confidence interval are based on percentile distributions obtained by the Monte Carlo simulations 
mentioned earlier in this section.  For example, the 90% confidence interval for the Weibull 
modulus is obtained from the 5 and 95 percentile distributions of the ratio of α~  to the true 
population value α.  The ratios (α~ /α ) necessary to construct the 90% confidence interval can be 
found in Table 2 of reference [7].  However, reference [7] limits the user to just the 90% 
confidence interval.  The WeibPar program contains the values needed to compute the lower 
confidence bounds associated with the 2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 20%, 25% percentile 
distributions.  Similarly, the WeibPar program contains the values needed to compute the upper 
confidence bound associated with the 75%, 80%, 85%, 87.5%, 90%, 92.5%, 95%, 97.5% 
percentile distributions.  Thus by carefully selecting the upper and lower confidence bounds the 
user can construct a number of different confidence intervals.  Finally the user should keep in 
mind that the biased estimate of the Weibull modulus must be used to construct the confidence 
bounds. 

 Confidence intervals can also be constructed for the estimated Weibull characteristic 
strength.  However, the percentile distributions needed to construct the intervals do not involve the 
same normalized ratios or the same tables as those used for the Weibull modulus.  Define the 
function 
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θ

θ

β

β
α
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ln~t  (A.23) 

The 90% confidence interval for the characteristic strength is obtained from the 5 and 95 percentile 
distributions of t.  For the point estimate of the characteristic strength, these percentile distributions 
can be found in Table 3 of reference [7].  However, reference [7] limits the user to just the 90% 
confidence bounds.  The WeibPar program contains the values needed to compute the lower 
confidence bounds associated with the 2.5%, 5%, 7.5%, 10%, 12.5%, 15%, 20%, 25% percentile 
distributions.  Similarly, the WeibPar program contains the values needed to compute the upper 
confidence bound associated with the 75%, 80%, 85%, 87.5%, 90%, 92.5%, 95%, 97.5% percentile 
distributions.  Thus by carefully selecting the upper and lower confidence bounds the user can 
construct a number of different confidence intervals.  Note that the biased estimate of the Weibull 
modulus must also be used here.  Again, this procedure is not appropriate for censored statistics.  In 
addition, the reader is cautioned that equation (A.23) can not be utilized in developing confidence 
bounds on 0

~
β .  Therefore the confidence bounds on θβ

~
 should not be converted through the use 

of equations (A.9) and (A.10). 

 The upper bound for the 90% confidence interval associated with α~  for the sample 
presented in Table A.1 is given by 
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where q0.95 is obtained from Table 2 of reference [7], or the appropriate "look-up" table associated 
with the WeibPar program, for a sample size of 30 failed specimens.  The lower bound is 
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 (A.25) 

where q0.05 is also obtained from Table 2 of reference [7], or the appropriate "look-up" table 
associated with the WeibPar program. 

 Similarly, the upper bound for the 90% confidence interval associated with θβ
~

 is 
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where t0.05 is obtained from Table 3 of reference [7], or the appropriate "look-up" table associated 
with the WeibPar program, for a sample size of 30 failed specimens.  The lower bound on θβ

~
 is 
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where t0.95 is also obtained from Table 3 of reference [7], or the appropriate "look-up" table 
associated with the WeibPar program.  Thus it can be stated with 90% confidence that the estimate 
of the Weibull modulus for this material is bounded such that 8.05 ≤ α~  ≤ 13.08.  Similarly, it can 
be stated that the estimate of the characteristic strength is bounded such that 517 ≤ θβ

~
 ≤ 550.  

The size of these bounds depend directly on the sample size.  If the bounds in this particular case 
were unacceptable, then the sample size should be increased.  The size of the confidence 
intervals addresses the question of how many samples are sufficient. 
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A.6 NON-LINEAR REGRESSION ESTIMATORS FOR A  
THREE-PARAMETER WEIBULL DISTRIBUTION 

 To date, most reliability analyses performed on structural components fabricated from 
ceramic materials have utilized the two-parameter form of the Weibull distribution.  The use of a 
two-parameter Weibull distribution to characterize the random nature of material strength implies a 
non-zero probability of failure for the full range of applied stress.  This represents a conservative 
design assumption when analyzing structural components.  The three-parameter form of the Weibull 
distribution was presented earlier in equations (A.1) and (A.2).  The additional parameter is a 
threshold stress (γ) that allows for zero probability of failure when the applied stress is at or 
below the threshold value.  Certain monolithic ceramics have exhibited threshold behavior.  The 
reader is directed to an extensive data base assembled by Quinn [8], the silicon nitride data in 
Foley et al. [9], as well as data (with supporting fractography) presented by Chao and Shetty [10] 
that was analyzed later in Duffy et al. [1]. 

 When strength data indicates the existence of a threshold stress, a three-parameter Weibull 
distribution should be employed in the stochastic failure analysis of structural components.  By 
employing the concept of a threshold stress, an engineer can effectively tailor the design of a 
component to optimize structural reliability.  To illustrate the approach Duffy et al. [1] embedded 
the three-parameter Weibull distribution in a reliability model that utilized the principle of 
independent action (PIA).  Analysis of a space shuttle main engine (SSME) turbo-pump blade 
predicted a substantial improvement in component reliability when the three-parameter Weibull 
distribution was utilized in place of the two-parameter Weibull distribution.  Note that the 
three-parameter form of the Weibull distribution can easily be extended to Batdorf's [11,12] model, 
reliability models proposed for ceramic composites (see Duffy et al. [13], or Thomas and 
Wetherhold [14]), as well as the interactive and noninteractive reliability models presented earlier. 

 The non-linear regression method proposed by Margetson and Cooper [15] is highlighted.  
Coding for the non-linear regression estimators have been formulated for two basic test 
configurations: the four-point bend specimen and the uniaxial test specimen.  However, these 
estimators maintain certain disadvantages relative to bias and invariance, and these issues were 
explored numerically in Duffy et al. [1].  The Monte Carlo simulations in Duffy et al. [1] 
demonstrated that the functions proposed by Margetson and Cooper [15] are neither invariant nor 
unbiased.  However, they are asymptotically well-behaved in that bias decreases and confidence 
intervals contract as the sample size increases.  Thus, even though bias and confidence bounds may 
never be quantified using these non-linear regression technique, the user is guaranteed that 
estimated values improve as the sample size is increased. 

 Regression analysis postulates a relationship between two variables.  In an experiment 
typically one variable can be controlled (the independent variable) while the response variable (or 
dependent variable) is not.  In simple failure experiments the material dictates the strength at failure, 
indicating that the failure stress is the response variable.  The ranked probability of failure (Pi) can 
be controlled by the experimentalist, since it is functionally dependent on the sample size (N).  
After arranging the observed failure stresses (σ1, σ2, σ3, ⋅⋅⋅ , σN) in ascending order, and 
specifying 
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i
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5.0−

=  (A.28) 

then clearly the ranked probability of failure for a given stress level can be influenced by increasing 
or decreasing the sample size.  The procedure proposed by Margetson and Cooper [15] adopts this 
philosophy.  They assume that the specimen failure stress is the dependent variable, and the 
associated ranked probability of failure becomes the independent variable. 

 Using the three parameter version of equation (A.10), an expression can be obtained relating 
the ranked probability of failure (Pi) to an estimate of the failure strength (σi

∼ ).  Assuming uniaxial 
stress conditions in a test specimen with a unit volume, equation (A.10) yields 

 
















P - 1
1

  +  = 
i

1/

i ln
~~~

~α

βγσ  (A.29) 

where α~ , β~  and γ~  are estimates of the shape parameter (α), the scale parameter (β), and 
threshold parameter (γ), respectively.  Expressions for the evaluation of these parameters for a 
test specimen subjected to pure bending are found in Duffy et al. [1].  Defining the residual as 

 i  =  i  -  iδ σ σ~  (A.30) 

where σi is the ith ranked failure stress obtained from actual test data, then the sum of the squared 
residuals is expressed as 

 ( )
i = 1

N
( i

2)  =  
i = 1

N
(  +  iW -  i

2)∑ ∑δ γ β α σ~ ~ / ~1  (A.31) 

Here the notation of Margetson and Cooper [15] has been adopted where 

 iW  =  1
1 -  iP

ln








  (A.32) 

Note that the forms of σi
∼  and W change with specimen geometry (see the previous discussion 

relating to the four-point bend specimen geometry).  It should be apparent that the objective of 
this method is to obtain parameter estimates that minimize the sum of the squared residuals.  
Setting the partial derivatives of the sum of the squared residuals with respect to α~ , β~  and γ~  
equal to zero yields the following three expressions 
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and 
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in terms of the parameter estimates.  The solution of this system of equations is iterative, where the 
third expression is used to check convergence at each iteration.  The initial solution vector for this 
system is determined after assuming α~ =1.  Then β~ is computed from equation (A.33) and γ~  is 
calculated from equation (A.34).  The values of these parameter estimates are then inserted into 
equation (A.35) to determine if the convergence criterion is satisfied to within some 
predetermined tolerance (κconv).  If this expression is not satisfied, α~  is updated and a new 
iteration is conducted.  This procedure continues until a set of parameter estimates are 
determined that satisfy equation (A.35). 

 The estimators perform reasonably well in comparison to estimates of the two-parameter 
Weibull distribution for the alumina data found in Table A.2.  Figure A.5 is a plot of probability of 
failure versus failure stress for this data.  The straight line represents the two parameter maximum 
likelihood fit to the data where α~ = 12.7, β~ = 395 (γ~ ≡ 0).  The non-linear curve represents the 

three parameter linear regression fit to the data where α~ = 2.71, β~ = 89.7, and γ~ = 301.  Note 
that the three-parameter distribution appears more efficient in predicting the failure data in the 
high reliability region of the graph.  This is a qualitative assessment.  Goodness-of-fit statistics 
such as the Kolmogorov-Smirnov statistic, the Anderson-Darling statistic, and likelihood ratios 
provide quantitative measures to establish which form of the Weibull distribution would best fit 
the experimental data.  These statistics are utilized in conjunction with hypothesis testing to 
assess the significance level at which the null hypothesis can be rejected.  Comparisons can then 
be made based on the value of the significance level. 
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Table A.2  Alumina Fracture Stress Data Utilized in Nonlinear Regression Estimation 
 Specimen Stress Specimen Stress Specimen Stress 

 1  320 MPa  13  368 MPa  24  393 MPa 

 2  334 MPa  14  369 MPa  25  393 MPa 

 3  335 MPa  15  370 MPa  26  395 MPa 

 4  341 MPa  16  381 MPa  27  406 MPa 

 5  343 MPa  17  383 MPa  28  408 MPa 

 6  345 MPa  18  385 MPa  29  417 MPa 

 7  350 MPa  19  385 MPa  30  420 MPa 

 8  351 MPa  20  386 MPa  31  430 MPa 

 9  352 MPa  21  389 MPa  32  434 MPa 

 10  363 MPa  22  391 MPa  33  436 MPa 

 11  365 MPa  23  392 MPa  34  447 MPa 

 12  367 MPa      

 

 
 

Figure A.5  Alumina failure data (see Table A.2) and probability of failure curves based on 
estimated parameters for the two- and three-parameter Weibull distributions. 
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